Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth of InN thin films on different Si substrates at ambient temperature

Identifieur interne : 000C31 ( Main/Repository ); précédent : 000C30; suivant : 000C32

Growth of InN thin films on different Si substrates at ambient temperature

Auteurs : RBID : Pascal:13-0171820

Descripteurs français

English descriptors

Abstract

Purpose - The purpose of this paper was to investigate the growth dependence of InN on Si substrate with different orientation through RF reactive magnetron sputtering in ambient temperature. Design/methodology/approach - The authors fabricated indium nitride (InN) thin films by radio frequency (RF) sputtering. The InN thin films were deposited on Si (100), Si (110) and Si (111) substrates at room temperature. The crystalline structure and surface morphology of the InN films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). Findings - X-ray diffraction results revealed that the wurtzite InN with preferential (101) orientation are deposited. Through the Scherrer structural analysis revealed nanocrystalline structure for InN films grown on Si (110), Si (100) and Si (111) orientation with crystallite size of 42.3, 33.8 and 24.1, respectively. The optical properties of InN layers were examined by Fourier transform infrared (FTIR) and micro-Raman reflectance spectroscopy at room temperature. The observation of the E1 (TO), A1 (LO), and E2(high) phonon modes of the InN from the IR and Raman results confirmed that the deposited InN thin film has hexagonal structure. Originality/value - Si (110) surface is not isotropic and it may offer a unique orientation plane for the nitride films which could reduce the defect density and the resulting tensile stress responsible for film cracking. Therefore, it is absolutely worth exploring the growth of InN on Si (110) by using relatively simple and cheap reactive sputtering technique.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0171820

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth of InN thin films on different Si substrates at ambient temperature</title>
<author>
<name sortKey="Amirhoseiny, Maryam" uniqKey="Amirhoseiny M">Maryam Amirhoseiny</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hassan, Zainuriah" uniqKey="Hassan Z">Zainuriah Hassan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHA SHIONG NG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>Penang</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0171820</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0171820 INIST</idno>
<idno type="RBID">Pascal:13-0171820</idno>
<idno type="wicri:Area/Main/Corpus">000E44</idno>
<idno type="wicri:Area/Main/Repository">000C31</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1356-5362</idno>
<title level="j" type="abbreviated">Microelectro. int.</title>
<title level="j" type="main">Microelectronics international</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient temperature</term>
<term>Atomic force microscopy</term>
<term>Cathode sputtering</term>
<term>Crystalline material</term>
<term>Crystallites</term>
<term>Defect density</term>
<term>Dispersive spectrometry</term>
<term>Energy dispersion</term>
<term>Fourier transformation</term>
<term>Fourier-transformed infrared spectrometry</term>
<term>Indium nitride</term>
<term>Nanocrystal</term>
<term>Optical characteristic</term>
<term>Radiofrequency</term>
<term>Radiofrequency sputtering</term>
<term>Raman spectroscopy</term>
<term>Reactive sputtering</term>
<term>Reflectivity</term>
<term>Scanning electron microscopy</term>
<term>Silicon</term>
<term>Structural analysis</term>
<term>Surface structure</term>
<term>Tensile stress</term>
<term>Thin films</term>
<term>X-ray spectroscopy</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Température ambiante</term>
<term>Pulvérisation haute fréquence</term>
<term>Pulvérisation réactive</term>
<term>Pulvérisation cathodique</term>
<term>Radiofréquence</term>
<term>Structure surface</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>Dispersion énergie</term>
<term>Spectrométrie dispersive</term>
<term>Spectrométrie RX</term>
<term>Microscopie force atomique</term>
<term>Analyse structurale</term>
<term>Cristallite</term>
<term>Caractéristique optique</term>
<term>Transformation Fourier</term>
<term>Spectrométrie FTIR</term>
<term>Spectrométrie Raman</term>
<term>Facteur réflexion</term>
<term>Densité défaut</term>
<term>Contrainte traction</term>
<term>Nitrure d'indium</term>
<term>Couche mince</term>
<term>Matériau cristallin</term>
<term>Nanocristal</term>
<term>Silicium</term>
<term>8115C</term>
<term>0779</term>
<term>8107B</term>
<term>InN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Purpose - The purpose of this paper was to investigate the growth dependence of InN on Si substrate with different orientation through RF reactive magnetron sputtering in ambient temperature. Design/methodology/approach - The authors fabricated indium nitride (InN) thin films by radio frequency (RF) sputtering. The InN thin films were deposited on Si (100), Si (110) and Si (111) substrates at room temperature. The crystalline structure and surface morphology of the InN films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). Findings - X-ray diffraction results revealed that the wurtzite InN with preferential (101) orientation are deposited. Through the Scherrer structural analysis revealed nanocrystalline structure for InN films grown on Si (110), Si (100) and Si (111) orientation with crystallite size of 42.3, 33.8 and 24.1, respectively. The optical properties of InN layers were examined by Fourier transform infrared (FTIR) and micro-Raman reflectance spectroscopy at room temperature. The observation of the E1 (TO), A1 (LO), and E2(high) phonon modes of the InN from the IR and Raman results confirmed that the deposited InN thin film has hexagonal structure. Originality/value - Si (110) surface is not isotropic and it may offer a unique orientation plane for the nitride films which could reduce the defect density and the resulting tensile stress responsible for film cracking. Therefore, it is absolutely worth exploring the growth of InN on Si (110) by using relatively simple and cheap reactive sputtering technique.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1356-5362</s0>
</fA01>
<fA03 i2="1">
<s0>Microelectro. int.</s0>
</fA03>
<fA05>
<s2>30</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth of InN thin films on different Si substrates at ambient temperature</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AMIRHOSEINY (Maryam)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HASSAN (Zainuriah)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHA SHIONG NG</s1>
</fA11>
<fA14 i1="01">
<s1>Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia</s1>
<s2>Penang</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>63-67</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26254</s2>
<s5>354000500699480010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0171820</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Microelectronics international</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Purpose - The purpose of this paper was to investigate the growth dependence of InN on Si substrate with different orientation through RF reactive magnetron sputtering in ambient temperature. Design/methodology/approach - The authors fabricated indium nitride (InN) thin films by radio frequency (RF) sputtering. The InN thin films were deposited on Si (100), Si (110) and Si (111) substrates at room temperature. The crystalline structure and surface morphology of the InN films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). Findings - X-ray diffraction results revealed that the wurtzite InN with preferential (101) orientation are deposited. Through the Scherrer structural analysis revealed nanocrystalline structure for InN films grown on Si (110), Si (100) and Si (111) orientation with crystallite size of 42.3, 33.8 and 24.1, respectively. The optical properties of InN layers were examined by Fourier transform infrared (FTIR) and micro-Raman reflectance spectroscopy at room temperature. The observation of the E1 (TO), A1 (LO), and E2(high) phonon modes of the InN from the IR and Raman results confirmed that the deposited InN thin film has hexagonal structure. Originality/value - Si (110) surface is not isotropic and it may offer a unique orientation plane for the nitride films which could reduce the defect density and the resulting tensile stress responsible for film cracking. Therefore, it is absolutely worth exploring the growth of InN on Si (110) by using relatively simple and cheap reactive sputtering technique.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G79</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Pulvérisation haute fréquence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Radiofrequency sputtering</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Pulverización alta frecuencia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Pulvérisation réactive</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Reactive sputtering</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Radiofréquence</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Radiofrequency</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Radiofrecuencia</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Structure surface</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Surface structure</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>XRD</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dispersion énergie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Energy dispersion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dispersión energía</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectrométrie RX</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>X-ray spectroscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Analyse structurale</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Structural analysis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Análisis estructural</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Cristallite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Crystallites</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Caractéristique optique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Optical characteristic</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Característica óptica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Transformation Fourier</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Fourier transformation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Spectrométrie FTIR</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Fourier-transformed infrared spectrometry</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Espectrometría FTIR</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Raman spectroscopy</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Densité défaut</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Defect density</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Densidad defecto</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Contrainte traction</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Tensile stress</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Tensión traccíon</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>0779</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>154</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0171820
   |texte=   Growth of InN thin films on different Si substrates at ambient temperature
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024